One world IAMP mathematical physics seminar

This online seminar takes place on Tuesdays, starting at UTC 14.

Current organisers are Jan Dereziński (Warsaw) and Daniel Ueltschi (Warwick).

Scientific committee: Nalini Anantharaman (Strassbourg), Mihalis Dafermos (Cambridge), Stephan De Bièvre (Lille), Krzysztof Gawedzki (ENS Lyon), Bernard Helffer (Nantes), Vojkan Jaksic (McGill), Flora Koukiou (Cergy), Antti Kupiainen (Helsinki), Mathieu Lewin (Paris Dauphine), Bruno Nachtergaele (UC Davis), Claude-Alain Pillet (Toulon), Robert Seiringer (IST Austria), Jan Philip Solovej (Copenhagen), Hal Tasaki (Gakushuin).

If you would like to receive seminar announcements, please send an email to with “subscribe” in the subject line; or “unsubscribe” to have your email address removed. You can also email comments or suggestions.

Other One World seminars are listed on the website of the probability seminar, which initiated the series. The website lists further mathematical-physics seminars.

Upcoming seminars

September 1, 2020
September 8, 2020 Antti Kupiainen (University of Helsinki)
Title TBA

Video link: TBA
September 15, 2020 Victor Ivrii (University of Toronto)
Scott and Thomas-Fermi approximations to electronic density
In heavy atoms and molecules, on the distances $ a \ll Z^{-1/2}$ from one of the nuclei (with a charge $Z_m$), we prove that the ground state electronic density $\rho_\Psi (x)$ is approximated in $\sL^p$-norm by the ground state electronic density for a single atom in the model with no interactions between electrons.
Further, on the distances $a \gg Z^{-1}$ from all of the nuclei (with a charge $Z_1,\ldots, Z_m$) we prove that $\rho_\Psi (x)$ is approximated in $\sL^p$-norm, by the Thomas-Fermi density. We cover both non-relativistic and relativistic cases.

Video link: TBA
September 22, 2020
September 29, 2020
October 6, 2020
October 13, 2020
October 20, 2020
October 27, 2020
November 3, 2020
November 10, 2020
November 17, 2020
November 24, 2020
December 1, 2020
December 8, 2020
December 15, 2020

Past seminars

July 28, 2020 Nicolas Rougerie (University of Grenoble Alpes)
Two modes approximation for bosons in a double well potential
We study the mean-field limit for the ground state of bosonic particles in a double-well potential, jointly with the limit of large inter-well separation/large potential energy barrier. Two one-body wave-functions are then macroscopially occupied, one for each well. The physics in this two-modes subspace is usually described by a Bose-Hubbard Hamiltonian, yielding in particular the transition from an uncorrelated "superfluid" state (each particle lives in both potential wells) to a correlated "insulating" state (half of the particles live in each potential well).
Through precise energy expansions we prove that the variance of the number of particles within each well is suppressed (violation of the central limit theorem), a signature of a correlated ground state.
Quantum fluctuations around the two-modes description are particularly relevant, for they give energy contributions of the same order as the energy difference due to suppressed variances in the two-modes subspace. We describe them in terms of two independent Bogoliubov Hamiltonians, one for each potential well.
Joint work with Alessandro Olgiati and Dominique Spehner

Video link:
July 21, 2020 Hugo Duminil-Copin (IHES / University of Geneva)
Marginal triviality of the scaling limits of critical 4D Ising and φ_4^4 models
In this talk, we will discuss the scaling limits of spin fluctuations in four-dimensional Ising-type models with nearest-neighbor ferromagnetic interaction at or near the critical point are Gaussian and its implications from the point of view of Euclidean Field Theory. Similar statements will be proven for the λφ4 fields over R^4 with a lattice ultraviolet cutoff, in the limit of infinite volume and vanishing lattice spacing. The proofs are enabled by the models' random current representation, in which the correlation functions' deviation from Wick's law is expressed in terms of intersection probabilities of random currents with sources at distances which are large on the model's lattice scale. Guided by the analogy with random walk intersection amplitudes, the analysis focuses on the improvement of the so-called tree diagram bound by a logarithmic correction term, which is derived here through multi-scale analysis.
Video link:
July 14, 2020 Hal Tasaki (Gakushuin University)
'Topological' index and general Lieb-Schultz-Mattis theorems for quantum spin chains
A Lieb-Schultz-Mattis (LSM) type theorem states that a quantum many-body system with certain symmetry cannot have a unique ground state accompanied by a nonzero energy gap. While the original theorem treats models with continuous U(1) symmetry, new LSM-type statements that only assume discrete symmetry have been proposed recently in close connection with topological condensed matter physics. Here we shall prove such general LSM-type theorems by using the "topological" index intensively studied in the context of symmetry protected topological phase. Operator algebraic formulation of quantum spin chains plays an essential role in our approach. Here I do not assume any advanced knowledge in quantum spin systems or operator algebra, and illustrate the ideas of the proof (which I believe to be interesting).
The talk is based on a joint work with Yoshiko Ogata and Yuji Tachikawa in arXiv:2004.06458.

Video link:
July 7, 2020 Bruno Després (Sorbonne University)
Spectral-scattering theory and fusion plasmas
Motivated by fusion plasmas and Tokamaks (ITER project), I will describe recent efforts on adapting the mathematical theory of linear unbounded self-adjoint operators (Kato, Lax, Reed-Simon, ....) to problems governed by kinetic equations coupled with Maxwell equations. Firstly it will be shown that Vlasov-Poisson-Ampere equations, linearized around non homogeneous Maxwellians, can be written in the framework of abstract scattering theory (linear Landau damping is a consequence). Secondly the absorption principle applied to the hybrid resonance will be discussed. All results come from long term discussions and collaborations with many colleagues (Campos-Pinto, Charles, Colas, Heuraux, Imbert-Gérard, Lafitte, Nicolopoulos, Rege, Weder, and many others).
Video link:
June 30, 2020 Laure Saint-Raymond (ENS Lyon)
Fluctuation theory in the Boltzmann-Grad limit
In this talk, I will discuss a long term project with T. Bodineau, I. Gallagher and S. Simonella on hard-sphere dynamics in the kinetic regime, away from thermal equilibrium. In the low density limit, the empirical density obeys a law of large numbers and the dynamics is governed by the Boltzmann equation. Deviations from this behavior are described by dynamical correlations, which can be fully characterized for short times. This provides both a fluctuating Boltzmann equation and large deviation asymptotics.
Video link:
June 23, 2020 Nilanjana Datta (University of Cambridge)
Discriminating between unitary quantum processes
Discriminating between unknown objects in a given set is a fundamental task in experimental science. Suppose you are given a quantum system which is in one of two given states with equal probability. Determining the actual state of the system amounts to doing a measurement on it which would allow you to discriminate between the two possible states. It is known that unless the two states are mutually orthogonal, perfect discrimination is possible only if you are given arbitrarily many identical copies of the state.
In this talk we consider the task of discriminating between quantum processes, instead of quantum states. In particular, we discriminate between a pair of unitary operators acting on a quantum system whose underlying Hilbert space is possibly infinite-dimensional. We prove that in contrast to state discrimination, one needs only a finite number of copies to discriminate perfectly between the two unitaries. Furthermore, no entanglement is needed in the discrimination task. The measure of discrimination is given in terms of the energy-constrained diamond norm and one of the key ingredients of the proof is a generalization of the Toeplitz-Hausdorff Theorem in convex analysis. Moreover, we employ our results to study a novel type of quantum speed limits which apply to pairs of quantum evolutions.This work was done jointly with Simon Becker (Cambridge), Ludovico Lami (Ulm) and Cambyse Rouze (Munich)

Video link:
June 16, 2020 Nicola Pinamonti (University of Genova)
Equilibrium states for interacting quantum field theories and their relative entropy
During this talk we will review the construction of equilibrium states for interacting scalar quantum field theories, treated with perturbation theory, recently proposed by Fredenhagen and Lindner. We shall in particular see that this construction is a generalization of known results valid in the case of C*-dynamical systems. We shall furthermore discuss some properties of these states and we compare them with known results in the physical literature. In the last part of the talk, we shall show that notions like relative entropy or entropy production can be given for states which are of the form discussed in the first part of talk. We shall thus provide an extension to quantum field theory of similar concepts available in the case of C*-dynamical systems.
Video link:
June 9, 2020 Andreas Winter (Universitat Autònoma de Barcelona)
Energy-constrained diamond norms and the continuity of channel capacities and of open-system dynamics
The channels, and more generally superoperators acting on the trace class operators of a quantum system naturally form a Banach space under the completely bounded trace norm (aka diamond norm). However, it is well-known that in infinite dimension, the norm topology is often "too strong" for reasonable applications. Here, we explore a recently introduced energy-constrained diamond norm on superoperators (subject to an energy bound on the input states). Our main motivation is the continuity of capacities and other entropic quantities of quantum channels, but we also present an application to the continuity of one-parameter unitary groups and certain one-parameter semigroups of quantum channels.
Video link:
June 2, 2020 Mihalis Dafermos (Cambridge University)
The nonlinear stability of the Schwarzschild metric without symmetry
I will discuss an upcoming result proving the full finite-codimension non-linear asymptotic stability of the Schwarzschild family as solutions to the Einstein vacuum equations in the exterior of the black hole region. No symmetry is assumed. The work is based on our previous understanding of linear stability of Schwarzschild in double null gauge. Joint work with G. Holzegel, I. Rodnianski and M. Taylor.
Video link:
May 26, 2020 Sven Bachmann (University of British Columbia)
Adiabatic quantum transport
In the presence of a spectral gap above the ground state energy, slowly driven condensed matter systems may exhibit quantized transport of charge. One of the earliest instances of this fact is the Laughlin argument explaining the integrality of the Hall conductance. In this talk, I will discuss transport by adiabatic processes in the presence of interactions between the charge carriers. I will explain the central role played by the locality of the quantum dynamics in two instances: the adiabatic theorem and an index theorem for quantized charge transport. I will also relate fractional transport to the anyonic nature of elementary excitations.
Video link:
May 19, 2020 Pierre Clavier (University of Potsdam)
Borel-Ecalle resummation for a Quantum Field Theory
Borel-Ecalle resummation of resurgent functions is a vast generalisation of the well-known Borel-Laplace resummation method. It can be decomposed into three steps: Borel transform, averaging and Laplace transform. I will start by a pedagogical introduction of each of these steps. To illustrate the feasability of the Borel-Ecalle resummation method I then use it to resum the solution of a (truncated) Schwinger-Dyson equation of a Wess-Zumino model. This will be done using known results about this Wess-Zumino model as well as Sauzin's analytical bounds on convolution of resurgent functions.
Video link:
May 12, 2020 Jan Philip Solovej (University of Copenhagen)
Universality in the structure of Atoms and Molecules
Abstract: The simplest approximate model of atoms and molecules is the celebrated Thomas-Fermi model. It is known to give a good approximation to the ground state energy of heavy atoms. The understanding of this approximation relies on a beautiful and very accurate application of semi-classical analysis. Although the energy approximation is good, it is, unfortunately, far from being accurate enough to predict quantities relevant to chemistry. Thomas-Fermi theory may nevertheless tell us something surprisingly accurate about the structure of atoms and molecules. I will discuss how a certain universality in the Thomas-Fermi model, indeed, holds approximately in much more complicated models, such as the Hartree-Fock model. I will also show numerical and experimental evidence that the approximate universality may hold even for real atoms and molecules.
Video link:
May 5, 2020 Martin Hairer (Imperial College London)
The Brownian Castle
Video link:
© by IAMP, 2010. Site design by David Jörg, 2010.